Patel [118] shows that the –idea can also be used to derive a structure-preserving method for the generalized symplectic eigenvalue problem similar to Van Loan's square-reduced method for the Hamiltonian eigenvalue problem [137].
More Books:
Language: en
Pages: 269
Pages: 269
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized
Language: en
Pages: 608
Pages: 608
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are
Language: en
Pages: 1904
Pages: 1904
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions
Language: en
Pages: 695
Pages: 695
Numerical Methods for Linear Control Systems Design and Analysis is an interdisciplinary textbook aimed at systematic descriptions and implementations of numerically-viable algorithms based on well-established, efficient and stable modern numerical linear techniques for mathematical problems arising in the design and analysis of linear control systems both for the first- and
Language: en
Pages: 442
Pages: 442
An in-depth, theoretical discussion of the two most important classes of algorithms for solving matrix eigenvalue problems.